Тема 3.2.2.

Зависимость сопротивления проводника от длины, площади поперечного сечения и материала проводника. Зависимость сопротивления металлического проводника от температуры.

Сопротивление.

Из закона Ома $R = \frac{U}{I}$, но сопротивление проводника не зависит ни от силы тока, ни от напряжения. Сопротивление – это характеристики самого проводника

Проводник, обладающий электрическим сопротивлением, называется резистором.

Сопротивление – это характеристики самого проводника.

Сопротивление зависит от:

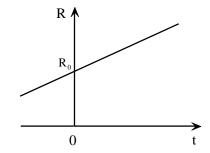
- 1. Длины проводника
- 2. Площади поперечного сечения
- 3. Материала проводника

R – сопротивление (Ом).

ho — удельное сопротивление проводника (Ом · м) - табл.

 ℓ — длина проводника (м).

$$1 \mathcal{M} \mathcal{M}^2 = 1 \cdot 10^{-6} \mathcal{M}^2$$


S — площадь поперечного сечения проводника (сечение) (м²).

Ссопротивление металла объясняется тем, что движущиеся по нему электроны, сталкиваются с ионами кристаллической решётки.

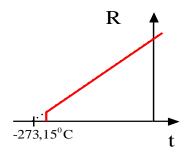
Зависимость сопротивления металлического проводника от температуры.

С увеличением температуры растет скорость и амплитуда колебаний ионов кристаллической решётки металла, следовательно столкновения электронов и ионов станут чаще.

 $R = R_0(1 + \alpha \triangle t)$

R — сопротивление при данной температуре (Ом).

 R_0 — сопротивление при 0° С (Ом).


 α — температурный коэффициент сопротивления $(\frac{1}{\text{град}})$ табл.

 Δt — температура (0°С).

Для чистых металлов $\alpha \approx \frac{1}{273}$

Сверхпроводимость.

В 1911 г. голландский ученый Г. Камерлинг-Оннес, исследуя сопротивление ртути при ее постоянном охлаждении, обнаружил, что при температуре около -269⁰С сопротивление ртути скачком падало до нуля. В дальнейшем ему удалось это же явление наблюдать и у ряда других металлов при их охлаждении до температур, близких к абсолютному нулю.

Интерес к явлению сверхпроводимости в современной науке возрастал по мере обнаружения материалов, у которых сверхпроводимость наступала при более высоких температурах.

Технические применения высокотемпературных сверхпроводников.

- 1. Сверхпроводящие кабели способны передавать огромную энергию на большие расстояния совершенно без потерь.
- 2. Сверхпроводящие материалы могут служить также «накопителями » энергии: создав ток в сверхпроводящем кольце, можно сколь угодно долго сохранять энергию, расходуя ее по мере необходимости.
- 3. Сверхпроводящие обмотки электромагнитов дают возможность получить сверхмощные магнитные поля, используя при этом небольшие установки.

Годы	Значения критических температур, 0 С
1911	-269
1985	-253
1986	-243
1987	-148
1990	-113